
October 27, 2020

Hands On

with

DevSecOps Tools

Workshop

Presented by ASMGi

Today’s Presenter

Alex Frankel

Software Developer, ASMGi

afrankel@asmgi.com

Timothy Thompson

Senior Security Specialist

tthompson@asmgi.com

2

Agenda

3

◆ Static Application Security Testing (SAST)

◆ Software Composition Analysis (SCA)

◆ Dynamic Application Security Testing (DAST)

– What (are these Tools)

– Why (Reasons to Use)

– How (to Use these Tools)

– Output (Interpret the Results)

– Action (Remediation Steps)

– Moving Forward (Keys for Success)

STATIC APPLICATION SECURITY TESTING
(SAST)

4

What is Static Application Security Testing (SAST)?

Static Application Security Testing (SAST),

or static analysis, is a testing methodology that

analyzes source code to find security vulnerabilities

that make your organization's applications susceptible

to attack.

SAST scans an application before the code is compiled.

5

Why use SAST?

◆ Scans all Code even Aspects that are not even used

◆ Static Code Scans do not require Fully Completed Code

◆ Create Coding Standards that are enforced across a Development Team

◆ Identification of Issues early in the Software Development Lifecycle

◆ Ultimately to save Time, Effort, and Money!

6

How Do We Conduct a Static Application Security Test?

7
Source: ScienceSoft 2020

Output – How to Interpret the SAST Results

8

Output - How To Interpret SAST Results (continued)

9
Source: ScienceSoft 2020

Vulnerabilities Hot Spots

• BLOCKER
• Bug with a high probability to impact the behavior of the application in production: memory leak, unclosed JDBC connection,

The code MUST be immediately fixed.
• CRITICAL

• Either a bug with a low probability to impact the behavior of the application in production or an issue which represents a security
flaw: empty catch block, SQL injection, ... The code MUST be immediately reviewed.

• MAJOR
• Quality flaw which can highly impact the developer productivity: uncovered piece of code, duplicated blocks, unused parameters…

• MINOR
• Quality flaw which can slightly impact the developer productivity: lines should not be too long, "switch" statements should have at

least 3 cases, ...
• Hot Spot

• A Security Hotspot highlights a security-sensitive piece of code that the developer needs to review. Upon review, you'll either find
there is no threat, or you need to apply a fix to secure the code.

Action - How To Remediate Vulnerabilities

◆ Many of the Tools available today provide a drill down to find exact problems

and will outline items such as:

– What is the issue

– Where the issue can be found in the application

– Why this item creates a security issue

– When the issue was first detected

– How - an estimation of effort to remediate the security issue

10

Action - Dashboard Drilldown – Where To Find The Issue

11

Action - Dashboard Drilldown – How To Correct the Issue

12

Moving Forward – Keys for Success

13
Source: ScienceSoft 2020

◆ Potential Issue: Language Support

– Mitigating Step

• Conduct appropriate research when selecting a Tool to confirm it supports the Languages used by your Solutions

◆ Potential Issue: Time required to run a Scan

– Mitigating Step

• Scheduling Scans

• Conducting Scans on Code Check Ins

◆ Potential Issue: Results can include many False Positives

– Mitigating Steps

• Rules can be tuned to help alleviate this Issue

SOFTWARE COMPOSITION ANALYSIS
(SCA)

14

What is Software Composition Analysis (SCA)?

◆ Software Composition Analysis (SCA)

is an open source component

management tool that:

• Generates a report, listing all open source
components in the application including
direct and indirect dependencies

• The tool can also detect software licenses,
deprecated dependencies, as well as
vulnerabilities and potential exploits

15

Why use SCA?

◆ SCA was born out of a cross-industry rise in Open Source usage which made it

increasingly hard for companies to track Open Source components manually using

spreadsheets, emails and ticketing systems

◆ As Open Source usage grew in software creation, it became a necessity to

automate the Open Source Management Process

◆ Protect applications by identifying:

• Vulnerabilities in the Open Source components

• Details on Current and Expired Licenses

• Out-of-date Library Versions and Age

16

How to Conduct a SCA Scan?

17

Output - How to Interpret the SCA Results

18

◆ Results and Ranking

– High, Medium, and Low Severity Issues

◆ Information

– Most SCA Tools will link the issue to a detail page that includes:

• What Version of the Open Source Code introduced the Security Issue

• Why that Version is a Security Exploit and how the Attack is done

• How - what Version is needed to correct the Issue

Action - Drilling Into An Issue

19

Moving Forward – Keys for Success - SCA

20
Source: ScienceSoft 2020

◆ Potential Issue: Impact on Workflows and Routines

– Mitigating Step

• Run Scans on Check In

• Schedule Reports to Automatically Run

◆ Potential Issue: Impact on Team Throughput

– Mitigating Step

• Establish Processes to Review Reports and Remediate Issues as “real time” as possible

◆ Potential Issue: On Premise Versions Out of Date

– Mitigating Steps

• Ensure On Premise Versions of Solutions are kept up to date to ensure solution is working effectively

DYNAMIC APPLICATION SECURITY TESTING
(DAST)

21

What is Dynamic Application Security Testing?

➢ Dynamic Application Security Testing (DAST) is a black-box security

testing methodology in which an application is tested from the outside

➢ Types of DAST

– Authenticated

• Uses known User Information

• Able to Drill down in Application based on User Rights

– Unauthenticated

• Can Examine only Publicly Visible Information

22

Why use DAST?

◆ Extremely good at finding Externally Visible Issues and Vulnerabilities

◆ Ability to identify Runtime Problems

◆ Excellent in finding Server Configuration and Authentication Issues

◆ Examines an Application when it is running and tries to Hack it just like an Attacker

23

How to Conduct a DAST?

24

◆ Input Application URL (or IP Address)

◆ Configure Scanner for Solution Scan Requirements

– Pre-Defined Security Profile

• OWASP Top 10

• SANS Top 20

– Customer Security Profile

• Including Requirements such as Compliance Requirements (e.g. PCI, HIPAA) or Specific Vulnerabilities

– Authentication Requirements

• Authenticated or Non-Authenticated

◆ Initiate Scan Process

Output - How to Interpret the DAST Results

25

Example Output
(Based on OWASP Top 10)

Output - How to Interpret the DAST Results (continued)

26

Example Output
Based on Severity Level Requirements and Output

How to Remediate Vulnerabilities

◆ Understanding the Vulnerabilities

– Many of the tools available today provide a drill down to find exact problems and will outline
items such as:

• Threat

• Impact

• Solution

• Detection Information

◆ Remediation

– Once the Vulnerabilities have been “understood”, Remediation can be Completed

◆ Validation

– Iterative approach is required to ensure all Vulnerabilities have been Remediated

27

Moving Forward – Keys for Success - DAST

28
Source: ScienceSoft 2020

◆ Potential Issue: No Code Visibility

– Mitigating Step

• Compliment DAST with a SAST and SCA Solution

◆ Potential Issue: Time required to run a Scan

– Mitigating Step

• Scheduling and Incorporating DAST into Development Workflows and Processes

◆ Potential Issue: Late in the Development Process

– Mitigating Step

• Incorporating DAST “early” in the Development Process (e.g. “Move to the Left”)

Moving Forward – Keys for Success – DAST (continued)

29
Source: ScienceSoft 2020

◆ Potential Issue: Security Profile Mis-Alignment

– Mitigating Step

• Understand Business Requirements to ensure all potential Vulnerabilities are Identified

◆Potential Issue: Missing Vulnerabilities by Un-Authenticated Scans

– Mitigating Steps

• Incorporate both Authenticated Scans when possible

Bonus - Example Tools / Solution Providers

◆ SCA

– White Source

– Snyk

– Veracode

– Black Duck

– Fossa

30

◆ SAST

– SonarQube

– Sonar Cloud

– Veracode

– Coverity

◆ DAST

– Qualys

– Rapid7

– Veracode

– Tenable

– Netsparker

800 Superior Ave E, Ste 1050
Cleveland, OH 44114

Phone: 216.255.3040
Fax: 216.274.9647

Email: info@asmgi.com

www.asmgi.com

Thank You!

31

