Hands On
with
DevSecOps Tools
Workshop

October 27, 2020

Presented by ASMGi

>

mirror mod.use y
mirror mod.use z }alst
\ operatlon "MIRROR 7":
N mirror mod.use x - False
\\\«1rror mod.use y - False

1rrop mod.use z = True

tr

m wmm 0.

)

l . l. ;

; ‘v ks ¥
(AT el .”;,"" SRR L
~ : ./4/ , i

7 /’4- t("please Select exactly two ObJEEES, the last or

)‘

Today’s Presenter

Alex Frankel Timothy Thompson

Software Developer, ASMGi Senior Security Specialist
afrankel@asmgi.com

tthompson@asmgi.com

Agenda <> ASMGi

: L : : — What (are these Tools)
¢ Static Application Security Testing (SAST)
— Why (Reasons to Use)

¢ Software Composition Analysis (SCA) _ How (to Use these Tools)
¢ Dynamic Application Security Testing (DAST) — Output (Interpret the Results)
— Action (Remediation Steps)

— Moving Forward (Keys for Success)

STATIC APPLICATION SECURITY TESTING
(SAST)

What is Static Application Security Testing (SAST)?

Static Application Security Testing (SAST),

or static analysis, is a testing methodology that
analyzes source code to find security vulnerabillities
that make your organization's applications susceptible
to attack.

SAST scans an application before the code is compiled.

Why use SAST?

¢ Scans all Code even Aspects that are not even used

¢ Static Code Scans do not require Fully Completed Code

¢ Create Coding Standards that are enforced across a Development Team
¢ ldentification of Issues early in the Software Development Lifecycle

¢ Ultimately to save Time, Effort, and Money!

How Do We Conduct a Static Application Security Test?

Rast GOl

Langua$e Pascali s w 5 B o e
et Object sz, = 12

e — m P—

5- Bocmernng

;.ScrlptPHP . AV

mm"::“m\rmpyt on_ln;:w H:.:‘:r'u :

Output — How to Interpret the SAST Results

Security Measures

20 5

& Vulnerabilities © @ Security Hotspots @

i Bulk Ch
Filters Clear Al Filters) | Bulk Change

t || | |[toselectissues | — | — |to navigate b 1/2issues 0 effort
v Type VULNERABILITY Core/Application/Impl/CryptoHelper.cs
¥¥ Bug 28

Use a strong cipher algorithm. Why is this an issue?

9monthsago v L19 % T~
l B Vulnerability 2 l B Vulnerability ¥ @ Critical * (O Open * Not assigned * Comment W Notags ~
& Code Smell 787
@ Security Hotspot 5 Use a strong cipher algorithm. Why is this an issue?

B Vulnerability = @ Critical* O Open * Not assigned * Comment
Ctrl + click to add to selection

v Severity

@ Critical 2

2 of 2 shown

9monthsago v L32 S T~
W Notags ~

Output - How To Interpret SAST Results (continued)

A BLOCKER
A Bug with a high probability to impact the behavior of the application in production: memory leak, unclosed JDBC connectic
The code MUST be immediately fixed.
A CRITICAL
A Either a bug with a low probability to impact the behavior of the application in production or an issue which representstya se
flaw: empty catch block, SQL injection, ... The code MUST be immediately reviewed.

A Quality flaw which can highly impact the developer productivity: uncovered piece of code, duplicated blocks, unused parar
A MINOR
A Quality flaw which can slightly impact the developer productivity: lines should not be too long, "switch" statements shvaatl |
least 3 cases, ...
A Hot Spot
A A Security Hotspot highlights a secusignsitive piece of code that the developer needs to review. Upon review, you'll &itlder
there is no threat, or you need to apply a fix to secure the code.

Action - How To Remediate Vulnerabilities

¢ Many of the Tools available today provide a drill down to find exact problems
and will outline items such as:

— What is the issue

— Where the issue can be found in the application
— Why this item creates a security issue

— When the issue was first detected

— How - an estimation of effort to remediate the security issue

Web.Ul/ClientApp/app/admin/header/header.component. html

Add rel="noopener noreferrer" to this link to prevent the original page from being modified by the opened link. Why is thisan 2yearsago~ L140 S% T+
[] issue?

ulnerability = ocker = pen * Not assigned » 1min effo ommen o tags =
Wul bili OBIk O 0 M i d 1 ffort C t W% N

Action - Dashboard Drilldown — Where To Find The Issue

12 1

13 I _key = settings.DbColumnEncryptionSecret;

14 T

15

16 public static string Encrypt(string input)

17 1

18 I byte[] inputlrray = UTF8Encoding.UTF8.GetBytes(input);

19 TripleDESCryptoServiceProvider tripleDES = new TripleDESCryptoServiceProvider();
Use a strong cipher algorithm. Why is this an issue? 9 months ago »+ L19 S
& Vulnerability ¥+ @ Critical ¥+ (O Open ~ Not assigned + Comment W Notags -

20 tripleDES.Key = UTF8Encoding .UTF3.GetBytes(key);

21 tripleDES.Mode = CipherMode.ECE;

22 tripleDES.Padding = PaddingMode.PKCS7;

23 ICryptoTransform cTransform = tripleDES.CreateEncryptor();

24 byte[] resultArray = cTransform.TransformFinalBlock(inputArray, @, inputArray.length);

25 tripleDES.Clear();

26 return Convert.ToBasebfdString(resultArray, 8, resultArray.length);

27 T

28

Action - Dashboard Drilldown — How To Correct the Issue

Cipher algorithms should be robust

ﬁ Vulnerability & Critical (@ Main sources W cwe, owasp-a3, owasp-ab, privacy, sa... Available Since Dec 17, 2019 SonarAnalyzer (C#)

Strong cipher algorithms are cryptographic systems resistant to cryptanalysis, they are not vulnerable to well-known attacks like brute force attacks for example.

It is recommended to use only cipher algorithms intensively tested and promoted by the cryptographic community.

Noncompliant Code Example

var tripleDES1 = new TripleDESCryptoServiceProvider(); // MNoncompliant: Triple DES is vulnerable to meet-in-the-middle attack
var simpleDES = new DESCryptoServiceProvider(); // Noncompliant: DES works with 56-bit keys allow attacks via exhaustive search

var RC2 = new RC2CryptoServiceProvider(); // Noncompliant: RC2 is vulnerable to a related-key attack
Compliant Solution
var AES = new AesCryptoServiceProvider(); // Compliant

See

OWASP Top 10 2017 Category A3 - Sensitive Data Exposure

MITRE, CWE-327 - Use of a Broken or Risky Cryptographic Algorithm
CERT, M5C61-J. - Do not use insecure or weak cryptographic algorithms
SANS Top 25 - Porous Defenses

Moving Forward — Keys for Success

¢ Potential Issue: Language Support
— Mitigating Step
A Conduct appropriate research when selecting a Tool to confirm it supports the Languages used by your Solutions

¢ Potential Issue: Time required to run a Scan

— Mitigating Step

A Scheduling Scans
A Conducting Scans on Code Check Ins

¢ Potential Issue: Results can include many False Positives

— Mitigating Steps

A Rules can be tuned to help alleviate this Issue

SOFTWARE COMPOSITION ANALYSIS
(SCA)

What is Software Composition Analysis (SCA)?

¢ Software Composition Analysis (SCA)
IS an open source component
management tool that:

AGenerates a report, listing all open sourc
components in the application including
direct and indirect dependencies

AThe tool can also detect software Iicenses-,
deprecated dependencies, as well as
vulnerabilities and potential exploits

Why use SCA?

¢ SCA was born out of a cross-industry rise in Open Source usage which made it

Increasingly hard for companies to track Open Source components manually using
spreadsheets, emails and ticketing systems

¢ As Open Source usage grew In software creation, it became a necessity to
automate the Open Source Management Process

¢ Protect applications by identifying:
A Vulnerabilities in the Open Source components
A Details on Current and Expired Licenses

A Out-of-date Library Versions and Age

How to Conduct a SCA Scan?

IMicrosoft /AL Cg Rast ool
Language Pascal s, = s o' = o

andage

Ruby EXEC
Action Ciarlmiom
e MET REXX

A
ORCA/Modkda-2 R rex s
A Moty | . PythonJ oot ™ o et
Caorad

Output - Howto Interpret the SCA Results

¢ Results and Ranking
— High, Medium, and Low Severity Issues

¢ Information

— Most SCA Tools will link the issue to a detail page that includes:

A What Version of the Open Source Code introduced the Security Issue
A Why that Version is a Security Exploit and how the Attack is done

A How - what Version is needed to correct the Issue

35 III View Report

+ SCORE ISSUE # IDENTIFIERS PROJECT EXPLOIT FIXABLE $#INTRODUCED STATUS REACHABILITY
s MATURITY % - - $
n 756 @ Cross-site Scripting (XSS) CWE-79 . ' Ul/ClientApp/package.json Proof Of @& 14 Oct, 2020 Open Nolnfo
o -2 Bitbucket Cloud Concept Upgrade

Action - Drilling Into An Issue

@ Cross-site Scripting (XSS)

Vulnerable module:

Introduced through: 7.2.1
Exploit maturity: Proof of concept
Fixed in: 7.2.2,8.1.1

§ 4 Fix this vulnerability

Detailed paths and remediation

® Introduced through: ClientApp@0.0.0 ?.2.1

Remediation: Upgrade to_@?.z.z

Overview

_ a JavaScript charting library based on SVG, with fallbacks to VML and canvas for old browsers.

Affected versions of this package are vulnerable to Cross-site Scripting (XSS). The <a> tag for text formats is translated into a tspan with
onclick , allowing for script injection.

Moving Forward — Keys for Success - SCA

¢ Potential Issue: Impact on Workflows and Routines
— Mitigating Step

A Run Scans on Check In
A Schedule Reports to Automatically Run

¢ Potential Issue: Impact on Team Throughput

— Mitigating Step
Aogaildlrof AaK tNRPOS&aasSa G2 wSOASG wSLERNIA yR wSYSRAFGS L

¢ Potential Issue: On Premise Versions Out of Date
— Mitigating Steps

A Ensure On Premise Versions of Solutions are kept up to date to ensure solution is working effectively

DYNAMIC APPLICATION SECURITY TESTING
(DAST)

What is Dynamic Application Security Testing?

» Dynamic Application Security Testing (DAST) is a black-box security
testing methodology in which an application is tested from the outside

» Types of DAST

— Authenticated

A Uses known User Information

A Able to Drill down in Application based on User Rights

— Unauthenticated

A Can Examine only Publicly Visible Information

Why use DAST?

¢ Extremely good at finding Externally Visible Issues and Vulnerabilities

¢ Ability to identify Runtime Problems

¢ Excellent in finding Server Configuration and Authentication Issues

¢ Examines an Application when it is running and tries to Hack it just like an Attacker

How to Conduct a DAST?

¢ Input Application URL (or IP Address)

¢ Configure Scanner for Solution Scan Requirements

— PreDefined Security Profile

A OWASP Top 10
A SANS Top 20

— Customer Security Profile

A Including Requirements such as Compliance Requirements (e.g. PCI, HIPAA) or Specific Vulnerabilities

— Authentication Requirements

A Authenticated or NofAuthenticated

¢ Initiate Scan Process

Output - How to Interpret the DAST Results

A1 Inection [0/t

A2 Broken Authenticaton [0 0%}

ﬁ Az Senzitve Data Expozuie [301.73%
ﬁ A4 ANL External Entiies [XKE} [0 7 0%}

_’ AR Braken Access Sontiol [71 041 .04%:)

_’ Ag Secuity Mzconfiguiation [93 £ 53.76%:
of A7 CiozeSite Scioting (X551 (37 1.73%

ﬁ AL Ingecure Deseiaizaton [0 0%}
ﬁ Aa Uszing Companents with Known Volnembiites (201 735}
ﬁ A10 Inzufficient Logging & Monitoing [0 0%}

g 1a 20 30 40 BQ &S0 PO 50 90 1040

Example Output
(Based on OWASP Top 10)

Output - Howto Interpret the DAST Resuli®ntinued)

50
70
&)
5{
40
20

20

| il |

Lewvel| B Lewe| 4 Lewve| = Lewve| 2 Lewvel1 Hensitive Information
Contents Sathered

Example Output
Based on Severity Level Requirements and Output

How to Remediate Vulnerabilities

¢ Understanding the Vulnerabilities
— Many of the tools available today provide a drill down to find exact problems and will outline
items such as:

A Threat

A Impact

A Solution

A Detection Information

¢ Remediation

—Once the Vulnerabili ti es have been under st

¢ Validation

— Iterative approach is required to ensure all Vulnerabilities have been Remediated

Moving Forward — Keys for Success - DAST

¢ Potential Issue: No Code Visibility

— Mitigating Step
A Compliment DAST with a SAST and SCA Solution

¢ Potential Issue: Time required to run a Scan

— Mitigating Step

A Scheduling and Incorporating DAST into Development Workflows and Processes

¢ Potential Issue: Late in the Development Process

— Mitigating Step
ALYO2NLIZ2NI GAYy3a 51 {¢ aSIENIe&eé¢ Ay

Moving Forward — Keys for Success — DAST (continued)

¢ Potential Issue: Security Profile Mis-Alignment
— Mitigating Step

A Understand Business Requirements to ensure all potential Vulnerabilities are Identified

¢ Potential Issue: Missing Vulnerabilities by Un-Authenticated Scans
— Mitigating Steps

A Incorporate both Authenticated Scans when possible

Bonus - Example Tools / Solution Providers

¢ SAST ¢ SCA ¢ DAST
— SonarQube — White Source — Qualys
— Sonar Cloud — Snyk — Rapid7
— Veracode — Veracode — Veracode
— Coverity — Black Duck — Tenable

— Fossa — Netsparker

Thank You!

800 Superior Ave E, Ste 1050
Cleveland, OH 44114

Phone: 216.255.3040
Fax: 216.274.9647

Email: info@asmgi.com

www.asmgi.com

31

